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We consider interpolation by spherical harmonics at points on a (d&1)-dimen-
sional sphere and show that, in the limit, as the points coalesce under an angular
scaling, the Lebesgue function of the process converges to that of an associated
algebraic interpolation problem for the original angles considered as points in
Rd&1. � 1999 Academic Press

Univariate polynomial interpolation is a classical and much studied
subject with many beautiful theoretical results as well as being of some
practical importance. In contrast, the multivariate case has been much less
studied and many basic questions remain open. A special case of particular
interest is interpolation on the sphere and it is the purpose of this work to
study one basic property of such interpolants: what happens in the limit as
the points coalesce to a single point under an angular scaling? Somewhat
unexpectedly the answer (see our main theorem) is that the interpolation
problem becomes one on a certain paraboloid!

In order to explain the details we begin with a general setup for polyno-
mial interpolation in several variables. Let K/Rd be compact. The polyno-
mials of degree n, when restricted to K, form a certain vector space which
we will denote by Pn(K). Let dn :=dim(Pn(K)) and let [P1 , ..., Pdn

] be a
basis for Pn(K). Suppose that we are given a set X=[x1 , ..., xdn

]/K of dn
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distinct points and a function f # C(K). The polynomial interpolation
problem is then to find P # Pn(K) such that

P(xj)= f (xj), 1� j�dn .

If P is written in the form

P= :
dn

k=1

ckPk ,

this amounts to solving the dn _dn linear system of equations

:
dn

k=1

ckPk(xj)= f (x j) 1� j�dn ,

which has a unique solution iff the associated Vandermonde matrix

V(x1 , ..., xdn) :=[Pk(x j)]1� j, k�dn

is non-singular. If this is indeed the case we may then form the fundamental
Lagrange polynomials

lk(x) :=
det V(x1 , ..., xk&1 , x, xk+1 , ..., xdn)

det V(x1 , ..., xdn
)

(1)

having the property that

lk(xj)=$ jk 1� j, k�dn .

This allows the interpolant to be written in the form

P(x)= :
dn

k=1

f (xk) lk(x).

The function

4n(x) := :
dn

k=1

|lk(x)|

is known as the Lebesgue function of the process. Its maximum value,
*n :=maxx # K 4n(x), is referred to as the associated Lebesgue constant and
gives the norm of the interpolation projection, ?n : C(K) � Pn(K), f � P,
where both spaces are equipped with the supremum norm on K. It is
fundamental to the study of the convergence of interpolants (see, e.g., [C]
or [SV]).
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Now, as is well known, polynomial interpolation is well behaved under
affine scalings. Specifically, for a scaling factor a>0, if we let K� :=aK, let
X� :=aX, and let lk be the corresponding Lagrange polynomials, then
clearly

l� k(ax j)=$ jk=lk(x j)

so that, in fact,

l� k(ax)=lk(x) (in Pn(K)) (2)

and hence

4� n(ax)=4n(x).

In particular,

*� n :=max
y # K�

4� n( y)=max
x # K

4� n(ax)=max
x # K

4n(x)=*n .

It follows that the Lebesgue constants are in fact invariant under affine
scalings.

However, such affine scalings are not always what is required in practice.
Consider, for example, interpolation of circular data by trigonometric poly-
nomials. In our setting this corresponds to K=S1, the unit circle,
dn=2n+1, and

X=[(cos(%1), sin(%1)), ..., (cos(%2n+1), sin(%2n+1))].

The scaling appropriate to such a situation is angular, i.e.,

X� =[(cos(a%1), sin(a%1)), ..., (cos(a%2n+1), sin(a%2n+1))].

But now there is a major difference. A trigonometric polynomial t(%) scaled
to t(a%) is no longer in general even another trigonometric polynomial and
thus a formula such as (2) will not be true. Nevertheless, as we shall see,
there is a limiting value for each l� k(a%) as a � 0 and thus also for *� n .

Surprisingly, these limiting values are the corresponding entities in an
associated algebraic interpolation problem, dependent only on the initial
values X. The argument is quite simple, provided a careful choice of basis
is made. It goes as follows. Any bivariate polynomial P(x, y) of degree �n
may be written in the form

P(x, y)= :
n

k=0

ak(x) yk, (3)
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where ak(x) is a polynomial of degree n&k. On the unit circle, x2+ y2=1
or y2=1&x2, and the substitution of this relation into (3) yields

P(x, y)= p1(x)+ yp2(x)

for certain polynomials p1 , p2 of degrees n and n&1, respectively. Hence,
the monomials

[xk | 0�k�n] _ [ yxk | 0�k�n&1]

form a basis for Pn(K). However, for our purposes, it is more convenient
to use the basis

[(x&1)k | 0�k�n] _ [ y(x&1)k | 0�k�n&1]. (4)

Now, on the circle, consider a typical point, scaled by an angular factor of
a, (x, y)=(cos(a%), sin(a%)). Its coordinates have power series expansions

x=cos(a%)=1&
a2%2

2!
+

a4%4

4!
+ } } }

y=sin(a%)=a%&
a3%3

3!
+ } } }

so that

(x&1)k=\&
a2%2

2!
+

a4%4

4!
& } } } +

k

=a2k \&
%2

2!
+

a2%4

4!
&

a4%6

6!
+ } } } +

k

=a2k \(&1)k

(2!)k %2k+a2Rk(%, a)+ , (5)

for some analytic function Rk(%, a) whose precise form is unimportant.
Similarly,

(x&1)k y=a2k+1 \(&1)k

(2!)k %2k+1+a2 Qk(%, a)+ , (6)

again for some analytic function Qk(%, a).
Hence, when computing lj (a%) by means of the expression (1), we see

that the column corresponding to the basis function (x&1)k has a com-
mon factor of a2k and that corresponding to (x&1)k y one of a2k+1. Since
this holds for both numerator and denominator, these powers of a simply
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cancel out. Thus, letting a � 0, we see from (5) and (6) that the column
corresponding to (x&1)k tends to (&1)k %2k�(2!)k and that to (x&1)k y
tends to (&1)k %2k+1�(2!)k. The factors (&1)k�(2!)k are entirely irrelevant
and we therefore may conclude that, as a � 0, lj (a%) tends to the corre-
sponding Lagrange polynomial for the algebraic interpolation problem
associated with the basis

[%2k | 0�k�n] _ [%2k+1 | 0�k�n&1]=[%k | 0�k�2n]

and the points %1 , %2 , ..., %2n+1 # R.
An analogous result holds for higher dimensional spheres. Thus, let K=

Sd&1/Rd,
the unit sphere. As is well known,

dn=\n+d&1
n ++\n+d&2

n&1 + .

Now let x # Rd&1 and y # R so that (x, y) # Rd. Then just as in (3), any
d-variate polynomial P(x, y) of degree �n may be written in the form

P(x, y)= :
n

k=0

ak(x) yk,

where ak(x) is a (d&1)-variate polynomial of degree at most n&k. On
Sd&1, y2=1&|x|2 so that

P(x, y)= p1(x)+ yp2(x)

for certain polynomials p1 , p2 of degree at most n and n&1 respectively.
Consequently, the monomials

[x:: |:|�n] _ [ yx;: |;|�n&1]

form a basis for Pn(S d&1) but, as before, it is more convenient to use the
basis

[(x&e1):: |:|�n] _ [ y(x&e1);: |;|�n&1],

where e1 :=(1, 0, ..., 0) # Rd&1.
Suppose then that we are given dn distinct points (xk, yk) # Sd&1,

1�k�dn . We will write each such point in slightly non-standard spherical
coordinates,

370 BOS AND DE MARCHI



xk
2 =cos(%k

1) sin(%k
2)

xk
3=cos(%k

1) cos(%k
2) sin(%k

3)

b
(7)

xk
d&1=cos(%k

1) cos(%k
2) } } } cos(%k

d&2) sin(%k
d&1)

xk
1=cos(%k

1) cos(%k
2) } } } cos(%k

d&2) cos(%k
d&1)

yk=sin(%k
1),

and then scale the angles %j by the factor a. Thus, the points coalesce at
(1, 0, ..., 0) as a � 0. (Note: This choice is made so that each coordinate has
one sin factor, which ensures that they converge at the same rate. Other
choices of coordinates may not scale all of them in a uniform manner,
which will have a pronounced affect on the limit. See the example below.)
We calculate, much as before (suppressing the superscript),

x2 =cos(a%1) sin(a%2)

=\1&
a2%2

1

2!
+

a4%4
1

4!
+ } } } +\a%2&

a3%3

3!
+ } } } +

=a%2+a3R2(a, %1 , %2)

=a[%2+a2r2(a, %1 , %2)]

x3=cos(a%1) cos(a%2) sin(a%3)

=\1&
a2%2

1

2!
+ } } } +\1&

a2%2
2

2!
+ } } } +\a%3&

a3%3
3

3!
+ } } } +

=a%3+a3R3(a, %1 , %2 , %3)

=[%3+a2R3(a, %1 , %2 , %3)]

etc.

In general, we have

xk=a%k+a2Rk(a, %1 , ..., %k), 2�k�d&1.

The first coordinate is somewhat different:

x1&1=cos(a%1) cos(a%2) } } } cos(a%d&1)&1

=\1&
a2%2

1

2!
+ } } } + } } } \1&

a2%2
d&1

2!
+ } } } +&1

=a2 {&1
2!

(%2
1+ } } } +%2

d&1)+a2R1(a, %1 , ..., %d&1)= .
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Finally,

y=sin(a%1)

=a[%1+a2Rd (a, %1)].

The precise forms of the analytic functions R1 , ..., Rd are unimportant.
Again, when these expressions are substituted into (1), we find that the

common powers of a cancel, and thus in the limit, as a � 0, we replace

(x&e1): by (%2
1+ } } } +%2

d&1):1 %:2
2

} } } %:d&1
d&1

and

y(x&e1); by (%2
1+ } } } +%2

d&1);1 %1%;2
2

} } } %;d&1
d&1

.

Clearly then, in the limit, we obtain the problem of interpolation at the dn

points

[%k | 1�k�dn]/Rd&1

by polynomials of the form

p1(%2 , ..., %d)+%1 p2(%2 , ..., %d), (8)

where deg ( p1)�n, deg ( p2)�n&1, and %d=%2
1+%2

2+ } } } +%2
d&1 . Let An

denote the space of such polynomials; i.e.,

An :=[ p1(%2 , ..., %d)+%1 p2(%2 , ..., %d) | deg( p1)�n,

deg ( p2)�n&1, %d=%2
1+ } } } +%2

d&1].

Since p1 , p2 are polynomials in d&1 variables, it follows that

dim(An)�dim(Pn(Rd&1))+dim(Pn&1(Rd&1))

=\n+d&1
n ++\n&1+d&1

n&1 +
=dn .

We claim that, in fact, dim(An)=dn and hence this interpolation problem
is well posed. To show this, it suffices to show that

p1(%2 , ..., %d&1 , %2
1+ } } } +%2

d&1)

+%1 p2(%2 , ..., %d&1 , %2
1+ } } } +%2

d&1)#0 (9)
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for all %1 , ..., %d&1 # R iff p1 #0 and p2 #0. So suppose that (9) holds. Since
this is an algebraic identity it also holds for all %1 , ..., %d&1 # C. In particular,
it holds for %1=it(%2

2+ } } } +%2
d1

)1�2, t # R, for which %2
1+ } } } +%2

d&1=
(1&t2)(%2

2+ } } } +%2
d1

). Hence,

p1(%2 , ..., %d&1 , (1&t2)(%2
2+ } } } +%2

d&1))

+it(%2
2+ } } } +%2

d&1)1�2 p2(%2 , ..., %d&1 , (1&t2)(%2
2+ } } } +%2

d&1))#0.

Equating real and imaginary parts, we have

p1(%1 , ..., %d&1 , (1&t2)(%2
2+ } } } +%2

d&1))#0

and

p2(%2 , ..., %d&1 , (1&t2)(%2
2+ } } } +%2

d&1))#0.

But since t # R is arbitrary it follows that p1 #0 and p2 #0, as claimed.
There is an interesting geometric interpretation of the space An . By

definition it consists of polynomials of the special form (8), restricted to the
paraboloid %d=%2

1+ } } } +%2
d&1 . But the dimension of the space of all

polynomials in %1 , ..., %d , restricted to this paraboloid is also dn (for the
same reason as for the sphere). Hence, letting

Q d&1 :=[(%1 , ..., %d) | %d=%2
1+ } } } +%2

d&1]/Rd

be this paraboloid, we have

An=Pn(Q d&1).

In summary, we have established the following theorem giving the ``limiting
value under scaling'' for polynomial interpolation on spheres

Theorem. Suppose we are given dn distinct points on the sphere,
(xk, yk) # S d&1, 1�k�dn . Consider two interpolation problems associated
to these points:

(1) Spherical interpolation. Interpolate a function f # C(Sd&1) at the
points (xk, yk) by a polynomial p # Pn(S d&1). Denote the fundamental
Lagrange polynomials by lk(x).

(2) Paraboloidal interpolation. First write the points in spherical
coordinates as in (7). Interpolate a function g # C(Qd&1) at the dn points
(%k, %k

d) # Qd&1 with %d=%2
1+ } } } +%2

d&1 by a polynomial p # Pn(Qd&1).
Denote the fundamental Lagrange polynomials by l� k(%) (if they exist, i.e. the
problem is unisolvent).
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FIG. 1. The limiting process.

a

FIG. 2. The behavior of the Lebesgue function for five equally spaced points.
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Let us denote by x(a) the point obtained by scaling the angles in (7) by the
factor a and by la

k the fundamental Lagrange polynomial associated to all the
given points on the sphere scaled by a in this manner. Then

lim
a � 0

la
k(x(a))=l� k(%).

The geometry underlying the theorem is illustrated in Fig. 1 for the case
d=2.

Corollary. Suppose that K is a compact subset of Sd&1 and that the
set of points X/K. As before, let *n :=maxx # K 4n(x) denote the associated
Lebesgue constant. Further, let K� and X� denote the angular scalings of these
sets by means of the spherical coordinates (7), and let *� n be the correspond-
ing Lebesgue constant. Then, if we let K% be the image of K under the inverse
of the mapping % � x given by (7), the limit of *� n as a � 0 is the Lebesgue
constant associated to problem (2) in the theorem on the set K% .

FIG. 3. The behavior of the Lebesgue function for seven points chosen at random.
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In general, the limiting values of the Lagrange polynomials depend
strongly on how the points coalesce. We give a simple example illustrating
this fact.

Example. Consider linear interpolation at four points on the sphere S2.
The spherical coordinates (7) specialize to

z=sin(,)

x=cos(,) cos(%)

y=cos(,) sin(%)

and the limit of the scaled interpolation problem corresponds to inter-
polation at the points (%, ,) by a polynomial in the linear span of
[1, %, ,, %2+,2].

FIG. 4. The behavior of the Lebesgue function for five Chebyshev points.
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If, on the other hand, we were to use the more standard spherical
coordinates

z=cos(,)

x=sin(,) cos(%)

y=sin(,) sin(%)

the limit would correspond to interpolation from the linear span of
[1, ,, %,, ,2], as is easily seen from the Taylor expansions of the
coordinate functions.

We conclude with several numerical examples illustrating the convergence
for points on the circle. Figure 2 is of five equally spaced points on &?�4�
%�?�4 and Fig. 3 is of seven points chosen at random. Although the
convergence is monotone in both cases, Fig. 4 shows that this is not always
true.
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